首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   51篇
  国内免费   7篇
测绘学   13篇
大气科学   109篇
地球物理   233篇
地质学   350篇
海洋学   56篇
天文学   109篇
综合类   1篇
自然地理   120篇
  2023年   6篇
  2022年   7篇
  2021年   9篇
  2020年   17篇
  2019年   19篇
  2018年   20篇
  2017年   34篇
  2016年   58篇
  2015年   45篇
  2014年   49篇
  2013年   90篇
  2012年   34篇
  2011年   41篇
  2010年   37篇
  2009年   38篇
  2008年   35篇
  2007年   34篇
  2006年   22篇
  2005年   12篇
  2004年   16篇
  2003年   20篇
  2002年   31篇
  2001年   15篇
  2000年   14篇
  1999年   12篇
  1998年   16篇
  1997年   16篇
  1996年   11篇
  1995年   12篇
  1994年   9篇
  1993年   5篇
  1992年   9篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1982年   12篇
  1981年   8篇
  1980年   17篇
  1979年   12篇
  1978年   15篇
  1977年   11篇
  1976年   8篇
  1975年   7篇
  1973年   7篇
  1969年   7篇
排序方式: 共有991条查询结果,搜索用时 15 毫秒
31.
By using an integrated approach, tsunami affected land, vegetation and inhabitants were assessed to evaluate the potential to restore and protect coastal land in the context of Kyoto Protocol's Clean Development Mechanism in Hambantota district in the south-eastern part of Sri Lanka. Firstly, assessments of the status of the tsunami affected area were carried out by collecting soil and well water samplings for carbon and salinity analysis. Secondly, identification of potential tree species for carbon sequestration and sustainable development was conducted to determine carbon stock and suitability to grow under the prevailing conditions. In addition, interviews to understand the local people's perception of forest plantations and land use were conducted. The results showed that the resilience process of salt intruded lands from the 2004 Asian tsunami has progressed rapidly with low salinity level in the soils 14 months after the event, while the well water showed evidence of salinity contamination. The carbon stock was highest in natural forests followed by coconut plantations. Land users could envision expanding their present plantations or establish new ones. The barriers were defined as lack of financial investment capital and limited land for extended plantations. If a Clean Development Mechanism project is to be established, the coconut tree was found to be the most appropriate tree species since it has high carbon content, had co-benefits and possesses a salt-tolerant characteristic. Finally, the tsunami event has triggered land users to perceive environmental benefits of protection from mangrove or other adequate vegetation such as coconut plantations as welcome and desired to decrease their vulnerability. The assessment of multi-functionality of forest plantations, such as small-scale community based Clean Development Mechanism, its generated income from carbon credits as well as the wish for environmental protection should be considered to increase the attractiveness of plantation projects in the coastal areas.  相似文献   
32.
ABSTRACT

The continuous submission and scaling-up of Nationally Determined Contributions (NDCs) constitutes a key feature of the Paris Agreement. In their NDCs, states propose governance mechanisms for implementation of climate action, in turn distinguishing appropriate roles for the state in climate governance. Clarity on Parties’ suggested roles for the state makes explicit assumptions on the premise of climate policy, in turn contributing to enhanced transparency in negotiations on the scaling-up of NDCs. This also speaks to ongoing debates on roles for the state in climate governance literature. This article identifies the governance mechanisms proposed by states in their NDCs and the roles for the state envisioned by those governance mechanisms, and also examines how cross-national patterns of roles for the state break or converge with conventional patterns of international politics. The analysis shows that states propose a plurality of roles, which to different extents may be complementary or conflictual. We conclude that income, region, and the Annexes under the United Nations Framework Convention on Climate Change (UNFCCC) are important for understanding suggested roles for the state, but that there are nuances to be further explored. We argue that this paper has three key findings: i) a majority of states rely on market mechanisms to implement their NDCs while rules on implementation and assessment of market mechanisms are still an outstanding issue in the negotiations, meaning that resolving this issue will be essential; ii) the process for evaluating and assessing qualitative governance mechanisms needs to be specified; and iii) increased awareness of differing views on the state’s roles makes explicit different perspectives on what constitutes an ambitious and legitimate contribution to combating climate change.

Key policy insights
  • A majority of states (> 75%) envision the state as regulator (creating and strengthening legislation), market facilitator (creating and maintaining market structures), or facilitator (creating more favourable material conditions for climate-friendly behaviour).

  • Greater awareness of differing views on roles for the state can increase understanding of different perspectives on ambition and legitimacy of contributions, in turn facilitating trust in negotiations.

  • A distinction between substantive and procedural qualitative governance mechanisms and their function and interaction would facilitate the stocktaking dialogues.

  相似文献   
33.
We used a set of large-eddy simulations to investigate the effect of one-dimensional stripe-like surface heat-flux heterogeneities on mixed-layer top entrainment. The profiles of sensible heat flux and the temporal evolution of the boundary-layer depth revealed decreased entrainment for small heat-flux amplitudes and increased entrainment for large heat-flux amplitudes, compared to the homogeneously-heated mixed layer. For large heat-flux amplitudes the largest entrainment was observed for patch sizes in the order of the boundary-layer depth, while for significantly smaller or larger patch sizes entrainment was similar as in the homogeneous case. In order to understand the underlying physics of this impact, a new approach was developed to infer local information on entrainment by means of the local flux divergence. We found an entrainment maximum over the centre of the stronger heated surface patch, where thermal energy is accumulated by the secondary circulation (SC) that was induced by the surface heterogeneity. Furthermore, we observed an entrainment maximum over the less heated patch as well, which we suppose is to be linked to the SC-induced horizontal flow convergence at the top of the convective boundary layer (CBL). For small heat-flux amplitudes a counteracting effect dominates that decreases entrainment, which we suppose is the horizontal advection of cold air in the lower, and warm air in the upper, CBL by the SC, stabilizing the CBL and thus weakening thermal convection. Moreover, we found that a mean wind can reduce the heterogeneity-induced impact on entrainment. If the flow is aligned perpendicular to the border between the differentially-heated patches, the SC and thus its impact on entrainment vanishes due to increased horizontal mixing, even for moderate wind speeds. However, if the flow is directed parallel to the border between the differentially-heated patches, the SC and thus its impact on entrainment persists.  相似文献   
34.
We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1–2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux components of sensible heat are the main reason for the unclosed energy balance in the considered situations. This result supports previously published investigations on the energy balance closure.  相似文献   
35.
Trees play an important role in mitigating heat stress on hot summer days, mainly due to their ability to provide shade. However, an important issue is also the reduction of solar radiation caused by trees in winter, in particular at high latitudes. In this study, we examine the transmissivity of total and direct solar radiation through crowns of single street trees in Göteborg, Sweden. One coniferous and four deciduous trees of species common in northern European cities were selected for case study. Radiation measurements were conducted on nine clear days in 2011–2012 in foliated and leafless tree conditions using two sunshine pyranometers—one located in shade of a tree and the other one on the roof of an adjacent building. The measurements showed a significant reduction of total and direct shortwave radiation in the shade of the studied trees, both foliated and leafless. Average transmissivity of direct solar radiation through the foliated and defoliated tree crowns ranged from 1.3 to 5.3 % and from 40.2 to 51.9 %, respectively. The results confirm the potential of a single urban tree to reduce heat stress in urban environment. However, the relatively low transmissivity through defoliated trees should be considered while planning street trees in high latitude cities, where the solar access in winter is limited. The results were used for parameterisation of SOLWEIG model for a better estimation of the mean radiant temperature (Tmrt). Measured values of transmissivity of solar radiation through both foliated and leafless trees were found to improve the model performance.  相似文献   
36.
Glacial surges in Svalbard are protracted and characterized by individual dynamic evolution, in contrast to many other areas, which calls for a subdivision of the classic two‐phased surge cycle. A dominating part of the ice masses seem to have a surge potential and this represents a considerable challenge for palaeoclimatic studies. Glaciological and geological models therefore need to be coupled. The issue is discussed with Fridtjovbreen glacier as an example. This ice mass is one of few glaciers studied throughout a surge cycle. It was active for 12 years (1991–2002) and represents the most protracted surge documented. The maximum advance rate was 4.2 m day?1, its maximum extent was reached after seven years, its run‐out distance was 4 km, and the relocated ice filled 5 km2 of the fjord. Intense subglacial thrusting occurred during various stages, including part of the ice‐front retreat, as shown by sub‐bottom profiling data from 2002. A six‐stage model is presented and processes are discussed with emphasis on the ice‐front retreat with transition to the quiescent phase. Although the surge mechanism itself is unrelated to climate, climatic conditions obviously play a major role in the course of a surge. During the surge, the ice mass made a dramatic impression in the landscape, but 10 years after the maximum extent, there is little onshore evidence of the event.  相似文献   
37.
38.
One of the most challenging aspects of tunnelling is prognostication of water inflows. More reliable prediction of groundwater inflow may give considerable economical saving for future tunnel projects and may also prevent damage of environment and installations on the surface. This paper is discussing the significance of eight hypotheses regarding geological parameters for predicting water inflow in tunnels. The respective hypotheses have been tested as part of a recent research project in Norway. Six Norwegian tunnels with different geological conditions were selected for the research; the Romeriksporten, Frøya, T-baneringen, Lunner, Skaugum, and Storsand tunnels. Based on detailed study of these tunnels, the hypotheses are tested by comparing water inflow with geological parameters and factors such as Q value, faulting, rock stress orientation, rock cover, thickness of permeable soil or depth of lake/sea above the tunnel, rock type, and width of weakness zones. It is found that four out of the eight tested hypotheses are supported, two have low to medium support and two are not supported. One unexpected result is that for the tunnels covered by this study, the water inflow was found to increase with rock cover.  相似文献   
39.
Using hydrogeochemical analysis of two large boreal rivers (pristine Kalix and hydropower regulated Lule) discharging into the Gulf of Bothnia, the major impacts of regulation on water discharge, element transport and their seasonal redistribution have been assessed. The pre-regulation hydrogeochemical features were assumed to be similar for the two rivers. For the Lule River, the average maximum runoff was almost halved, while the average minimum was tripled as a result of the regulation. The fraction of winter transport of total organic carbon (TOC), Fe, Si, suspended Mn and P in the Lule River was, according to a conservative estimate, two to three times higher than in the pristine river. Longer residence time in the Lule River delayed arrival of the suspended Mn peak and dissolved Si decline to the river mouth. During summer, the suspended C/N ratio in the regulated river was 10–20 compared to <10 for the pristine, suggesting presence of predominantly old organic material. This was supported by a virtually constant suspended P/Fe ratio throughout the year in the Lule River, indicating low abundance of phytoplankton. TOC varied irregularly in the Lule River suggesting temporal disconnection between the river and the upper riparian zone. The disappearance of the spring flow maximum, a shift of element transport from spring to winter and supply of mainly old organic material during the vegetation growth season may have a pronounced impact on the ecosystem of the Gulf of Bothnia and the river itself.  相似文献   
40.
The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine–augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca–Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in \(\log [(a_{{{\text{Na}}^{ + } }} )/(a_{{{\text{H}}^{ + } }} )]\) and decrease in \(\log [(a_{{{\text{Ca}}^{2 + } }} )/(a_{{{\text{H}}^{ + } }}^{2} )]\) of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号